
ECE444: Software Engineering
RE 2: Requirements Elicitation, Persona

Shurui Zhou

Learning Goals

• Basic proficiency in executing effective requirements interviews

• Understand that requirements are just “design data”, the information
you will use to support your design

• Understand what/why/how about personas

• Recognize and resolve conflicts with priorities

Criteria
https://techtalkdotorg.files.wordpress.com/2015/02/requireme
nts_analysis_focus.png

Quality Requirement

Quality of Service Compliance Architectural Constraint Development Constraint

Confidentiality Integrity Availability

DistributionInstallationSafety Security

Usability

PerformanceReliability MaintainabilityCost

Time Space

Deadline Variability

Software
interoperability

Convenience

Interface

User
interaction

Device
interaction

Accuracy

Cost

Collecting requirements: Elicit from stakeholders

• Survey: measure topics of interest in a
controlled, consistent manner; easy to
administer across large groups
• Identify target population, their attitudes

and preferences
• Validate assumptions or facts

• Interview: More expensive, but could
have follow-up questions to resolve
ambiguity

Types of questions: depend on your goals

Interview

Interview Process

• Identify stakeholder of interest and target information to be gathered.

• Conduct interview.
• (structured/unstructured, individual/group)

• Record + transcribe interview

• Report important findings.

• Check validity of report with interviewee.

About transcribing

• Transcribe the interview and identify the most relevant events to your
project

• Do your best to follow the exact wording of the conversation. The key
idea is to preserve any ambiguities and avoid summarizing or
reinterpreting what the stakeholder says during the interview.

• Zoom has auto transcription; or exiting speech to text transcription
tools (1) Temi (2) otter.ai

• Keep the transcription in your OneDrive

Kinds of questions

Sampling Strategies
Patton, M. Q. (1990). Qualitative Evaluation and Research
Methods, 2nded. Newbury Park, CA: Sage Publications.

Interview Advice
• Get basic facts about the interviewee before (role, responsibilities, …)
• Review interview questions before interview
• Begin concretely with specific questions, proposals; work through

prototype or scenario
• Relate to current system, if applicable.

• Be open-minded; explore additional issues that arise naturally, but
stay focused on the system.
• Contrast with current system/alternatives. Explore conflicts and

priorities
• Plan for follow-up questions

Personas

Personas
“Personas are detailed descriptions of imaginary people constructed out of
well-understood, highly specified data about real people”

—John Pruitt & Tamara Adlin

Partitioning the stakeholders into personas

Diversify your selections
•The common case (most users)
•The extremes (rare, but demanding users)

Why create personas?

Elements of a Persona 1.Persona Group (Banker, Hotelier, Web
Manager)
2.Fictional name
3.Job titles and Major Responsibilities
4.Demographics (Age, Education, Ethnicity, and
family status)
5.The goals and tasks they are trying to complete
using the site
6.Their physical, social, and technological
environment
7.A quote that sums up what matters most to
the persona as it relates to your site
8.Casual pictures representing that user group

Running example: Time keeper

Example Persona

Example Persona

Example Persona

Running example: Chef Co-Pilot

Running example: Chef Co-Pilot

Creating Personas

29

Exercise: Project 1

Education Pathways

Potential Personas?

The GenderMag Method https://gendermag.org/custom_persona.php

http://gendermag.org

Resolving Conflicts

Conflict Identification

Example
Human Resources stakeholder group explicitly requests to capture the
age of an employee,
Data Privacy team is saying that the age of the employee may not be
captured or used in reporting.

Conflict Analysis

• Data Conflict

• Conflict of interest

• Conflict of Value

• Relationship conflict

• Structural conflict

36

Exercise: Project 1

Education Pathways

Any potential conflicts?

37

http://courseography.cdf.toronto.edu/graph

Types of inconsistency
• Terminology clash: same concept named differently in different

statements
• e.g. library management: “borrower” vs. “patron”

• Designation clash: same name for different concepts in different
statements
• e.g. “user” for “library user” vs. “library software user”

• Structure clash: same concept structured differently in different
statements
• e.g. “latest return date” as time point (e.g. Fri 5pm)

vs. time interval (e.g. Friday)

Types of inconsistency, 2
• Strong conflict: statements not satisfiable together

• e.g. “participant constraints may not be disclosed to anyone else”
vs.

“the meeting initiator should know participant constraints”

• Weak conflict (divergence): statements not satisfiable together under
some boundary condition
• “patrons shall return borrowed copies within X weeks”

and
“patrons shall keep borrowed copies as long as needed”
contradict only if “needed>x weeks”

Handling inconsistencies

• Terminology, designation, structure: Build glossary, domain model

• Weak, strong conflicts: Negotiation required
• Cause: different objectives of stakeholders => resolve outside of requirements
• Cause: quality tradeoffs => explore preferences

Conflict Resolution

• Agreement

• Compromise

• Voting

• Definition of Variants

• Overruling

• ...

Documentation of Conflict Resolution

• Document the complete
detail of a conflict
resolution to prevent the
same conflict from arising
again during the life of the
project.

Requirements Traceability

• Keep connections between
requirements

• What follows from what

Summary

• Many solicitation strategies, including document analysis, interviews

• Do not underestimate the challenge of interviews

• Resolving conflicts

Documenting Requirement

Many different forms

• Informal vs formal

• Unstructured vs structured

• Text vs diagrams

• Structured text common in practice

• Tool supported for traceability and process integration

Software Requirements Specification (SRS)

• Formal requirements document

• Several standards exists

• Often basis for
contracts

Use Case Diagram

• Actor + action

Use Case

Use Cases help requirements analysts to…
•Identify actors and events around the system
•Define the system boundary –what is or is not within the

system scope?
•Investigate early design interactions
(uses cases need not be descriptions of the final design)

Defining actors/agents

• An actor is an entity that interacts with the system for the purpose of
completing an event [Jacobson, 1992].
• Not as broad as stakeholders.

• Actors can be a user, an organization, a device, or an external system.

Sales
Specialist

Marketing GPS
Receiver

Inventory
System

Use Case Templates

Use Case Templates

Use Case Templates

Use Case Name (Title)

Scope System under design

Level User level, subprocess level

Primary actor (actors can be primary, supporting, or offstage)

Stakeholders,
interests

Important! A use case should include everything necessary to satisfy
the stakeholders’ interests.

Preconditions What must always be true before a scenario begins. Not tested;
assumed. Don’t fill with pointless noise.

Success guarantees. Aka post conditions

Main success
scenario

Basic flow, “happy path”, typical flow. Defer all conditions to the
extensions. Records steps: interaction between actors, a validation, a
state change by the system.

Extensions Aka alternate flows. Usually the majority of the text. Sometimes
branches off into another use case.

Special requirements Where the non-functional/quality requirements live.

Technology and data
variations list

Unavoidable technology constraints; try to keep to I/O technologies.

Frequency of
occurrence

Miscellaneous
54

Use cases

Agile

User Stories

• Common agile development practice

• Informal descriptions of user-valued
features scheduled for implementation

• Details left for negotiation with customer
later or pointer to real requirements

• A user story is a metaphor for the work
being done, not a full description of the
work.

57

User Stories

58

“persona + need + purpose”

• "As a [persona]": Who are we building this for? We’re not just after a job
title, we’re after the persona of the person. Max. Our team should have a
shared understanding of who Max is. We’ve hopefully interviewed plenty
of Max’s. We understand how that person works, how they think and what
they feel. We have empathy for Max.
• “Wants to”: Here we’re describing their intent — not the features they use.

What is it they’re actually trying to achieve? This statement should be
implementation free — if you’re describing any part of the UI and not what
the user goal is you're missing the point.
• “So that”: how does their immediate desire to do something this fit into

their bigger picture? What’s the overall benefit they’re trying to achieve?
What is the big problem that needs solving?

• As Max, I want to invite my friends, so we can enjoy
this service together.
• As Sascha, I want to organize my work, so I can feel

more in control.
• As a manager, I want to be able to understand my

colleagues progress, so I can better report our
success and failures.
• As UX Manager,
John wants centralized assets management
so that his designers are in sync.
• As a user, I can indicate folders not to backup so

that my backup drive isn't filled up with things I
don't need saved.

User Story (Examples)

User Story (Examples)
– how can we improve it?
• iPhone users need access to a vertical view of the live feed when

using the mobile app.

• Desktop users need a “view fullscreen” button in the lower right hand
corner of the video player.

• Android users need to be linked to apple store.

61

62

Exercise: Project 1

Education Pathways

a user story?

A Good User Stories -- Concept of 3C's

User Story Example - Card

The conversation

• An open dialog between everyone
working on the project and the client

• Split up Epic Stories if needed

User Story Example - Conversation

• Conversations may
lead to a UI sketch,
or an elaboration of
business rules that
gets written down.
•ß the user story

references an entire
article for future
reading and
conversation.
•

The Confirmation

• A confirmation criteria that will show when the task is completed

• Could be automated or manual

User Story Example - Confirmation

Technical Story

Non-Functional Requirements

• Security

• Performance

• Reliability

• Usability

• ...

Some might be global, some local
– All responses should be below 3 seconds
– The wheel’s revolutions per minute should
be sampled 200 times per second to prevent
aliasing effects

It is hard to reconcile global properties with agile principles

Non-Functional Requirements

How to evaluate user study?

Independent

• Schedule in any order.

• Not overlapping in concept

• A story is not a contract.

• A story is an invitation to a conversation.

• Details to be negotiated during development

• Good Story captures the essence, not the details

• If a story does not have discernable value it should not be
done. Period.

• This story needs to have value to someone (hopefully the
customer)

• Especially relevant to splitting up issues

• “so that ...”

• Internal value --- “non-functional requirements”

• Helps keep the size small

• A value with high value but extremely lengthy
development time may not be the highest priority

• “Plans are nothing, planning is everything” -Dwight D.
Eisenhower

• Fit on 3x5 card

• two week iterations -- user stories to average
3-4 days of work

• Too big == unable to estimate

• Ensures understanding of task

• We know when we can mark task “Done”

• Acceptance criteria can be written immediately.

• Unable to test == do not understand

• TDD

Use Case Name (Title)

Scope System under design

Level User level, subprocess level

Primary actor (actors can be primary, supporting, or offstage)

Stakeholders,
interests

Important! A use case should include everything necessary to satisfy
the stakeholders’ interests.

Preconditions What must always be true before a scenario begins. Not tested;
assumed. Don’t fill with pointless noise.

Success guarantees. Aka post conditions

Main success
scenario

Basic flow, “happy path”, typical flow. Defer all conditions to the
extensions. Records steps: interaction between actors, a validation, a
state change by the system.

Extensions Aka alternate flows. Usually the majority of the text. Sometimes
branches off into another use case.

Special requirements Where the non-functional/quality requirements live.

Technology and data
variations list

Unavoidable technology constraints; try to keep to I/O technologies.

Frequency of
occurrence

Miscellaneous
81

Use cases

Is a User Story the same thing as a Use Case?

• Not interchangeable
• User Stories are centered on the result and the benefit of the thing

you're describing

• Use Cases can be more granular, and describe how your system will
act.

Use Cases vs User Story

• Similarity
• User Stories: user role, goal and acceptance criteria.
• Use Cases: an actor, flow of events and post conditions

• Difference
• Less details in User Story
• Small increments for getting feedback more frequently, rather

than having more detailed up-front requirement specification as in
Use Cases.

Why we still need Use Cases?

•Problem of User Story:
• Lack of context
• Sense of completeness that you covered all bases

relating to a goal.
•No mechanism for looking ahead at upcoming

work.

Use of User Stories
• Keep a board of user stories, group them into “epics”

• Epics are large bodies of work that can be broken down into a
number of smaller tasks (called stories).

85

https://www.atlassian.com/agile/project-management/epics

Story Mapping

•Epic
• Theme
• Story

From goals to story maps

Integrate Use Case, User Story and Story
Mapping techniques
• Lucidchart

• Jira Agile

• Team Foundation Server

• BoardThing

• Stories on Board

• FeatureMap

Industrial Requirements Tools

https://www.guru99.com/requirement-management-tools.html

Requirements prioritization

• Cost, time, and other limits

• Dependencies among requirements

• Nice to have

• Strategies to base on value contribution

Product Requirement Document (PRD)

1. Goals
2. User Personas
3. User Stories
4. Functional Requirements
5. Non-Functional Requirements
6. User interaction and design
7. Questions
8. Out of Scope

Summary

• Many documentation strategies; our focus is on user stories

Risk

What are risks?

• A risk is an uncertain factor that may result in a loss of satisfaction of
a corresponding objective

For example…

• System delivers a radiation overdose to patients (Therac-25, Theratron-780)

• Medication administration record (MAR) knockout

• Premier Election Solutions vote-dropping “glitch”

How to assess the level of risk?

• Risks consist of multiple parts:
• Likelihood of failure
• Negative consequences or impact of failure
• Causal agent and weakness (in advanced models)

• Risk = Likelihood x Impact

Aviation failure impact categories

• No effect – failure has no impact on safety, aircraft operation, or crew
workload

• Minor – failure is noticeable, causing passenger inconvenience or
flight plan change

• Major – failure is significant, causing passenger discomfort and slight
workload increase

• Hazardous – high workload, serious or fatal injuries

• Catastrophic – loss of critical function to safely fly and land

Risk assessment matrix

• MIL-STD-882E

https://www.system-safety.org/Documents/MIL-STD-882E.pdf

Risk Mgmt in Agile

•Short development cycles and quick delivery
•Testing is part of the development cycle
•Business people are often part of the team which reduces risks
•High responsiveness to changes
•Most frameworks do not prescribe risk management processes and
techniques which requires the project team to select and adapt
adequate measures

Risk Response Strategies

Risk analysis example (Time Keeper)

Risk Probability Impact Solution
1 Application

crashes
Low Medium Introduce Long-term

stability test

2 Inappropriate
auto-
scheduling

Medium Low Adjust auto-generated
schedule manually

3 Outdated
integration

Low Low Ignore

Further Reading

• Larman, Craig. Applying UML and Patterns: An Introduction to Object
Oriented Analysis and Design and Interative Development. Pearson,
2012. Chap. 6

• Van Lamsweerde A. Requirements engineering: From system goals to
UML models to software. John Wiley & Sons; 2009. Chapter 2-4

• “Advanced Use Case Modeling, Volume I”, Frank Armour, Granville
Miller,Addison-Wesley, 2001, Ch 8-10.

• https://aanimesh.files.wordpress.com/2013/09/applying-uml-and-
patterns-3rd.pdf

111

Todo

Lab 1: Git&GitHub
4 activities, submit your repo url by Friday
(command line / desktop UI)

Assignment 1: 8 minutes Survey

Milestone 1: Team workflow

Software Development Models

Learning Goals

• Understand the concepts and differences between different
development model
• Define agile as both a set of iterative process practices and a business

approach for aligning customer needs with development.
• Explain the motivation behind and reason about the tradeoffs

presented by several common agile practices.
• Summarize both scrum and extreme programming, and provide

motivation and tradeoffs behind their practices.
• Identify and justify the process practices from the agile tradition that

are most appropriate in a given modern development process.

Software Development Models

https://www.scnsoft.com/blog/s
oftware-development-models

Waterfall Model

Producing a car/bridge
• Estimable costs and risks

• Expected results

• High quality

• Separation between plan
and production

• Simulation before construction

• Quality assurance through measurement

• Potential for automation

15-313 Software Engineering 119

The fact....
• Properties of software vastly different than for traditional engineering

systems

• Software systems are abstract and intangible;
not constrained by physical laws or manufacturing processes

• No natural limits to the potential of software
e.g., singularity

• It probably doesn't make sense to apply typical engineering methods and
processes to software.

Software Development Models
https://www.scnsoft.com/blog/s
oftware-development-models

V-Model

Expensive and
time-consuming

https://www.youtube.com/watch?time_continue=6&v=An7HC1LolDM&feature=emb_logo

Use cases
Projects where failures and downtimes are unacceptable (e.g.,
medical software, aviation fleet management software).

Software Development Models

https://www.scnsoft.com/blog/s
oftware-development-models

Spiral

• Focus on thorough risk
assessment.
• Intensive customer

involvement

Use Cases

• Projects with unclear business needs or too ambitious/innovative
requirements.

• Projects that are large and complicated.

• Research and development (R&D) activity or the introduction of a
new service or a product.

Software Development Models

https://www.scnsoft.com/blog/s
oftware-development-models

Agile

https://sredmond.medium.com/how-to-actually-be-agile-
f5f15c6b2de7

Extreme Programming (XP)

134

Human evolution

XP evolution

Extreme Programming (XP)

135

XP Practices (subset of Agile!)
• TDD (test-first approach).
• Planning game: 1-3 week iterations, one iteration at a time, customer decides which user stories to use
• Whole team/on-site customer: “customer speaks with one voice.” Customer may be a whole team.
• Small releases, with valuable functionality, to guard against unhappy customers.
• System metaphor is a single shared story of how it works. (Sort of like architecture)
• Simplest thing that possibly works (coding for today)
• Refactor all the time, because you don’t have up-front design before programming.
• Collective ownership. Everyone is responsible for everything. If a programmer sees something she doesn’t

like, she can go change it. Task ownership is individual.
• Pair programming. can code alone for nonproduction code like prototypes
• Continuous Integration. A day of development at most.
• Sustainable pace. 40 hour work weeks.
• Coding standards, Especially since all code can change at all times.

136

Scrum Process

137

• Sprint Cycle

Short development cycle

141

Agile Software Development Is …

Both:

• a set of software engineering best practices (allowing for rapid
delivery of high quality software)

• a business approach (aligning development with customer needs and
goals)

On-site Customer

A customer sits with the team full-time.

146

The Manifesto for Agile Software Development (2001)

Value

Individuals and
interactions over Processes and tools

Working software over Comprehensive
documentation

Customer collaboration over Contract negotiation

Responding to change over Following a plan

The Twelve Principles of Agile Software Development
1. Projects are built around motivated individuals, who should be trusted

2. Face-to-face conversation is the best form of communication (co-location)

3. Self-organizing teams

4. Working software is delivered frequently (weeks rather than months)

5. Working software is the principal measure of progress

6. Sustainable development, able to maintain a constant pace

7. Continuous attention to technical excellence and good design

8. Simplicity—the art of maximizing the amount of work not done—is essential

9. Customer satisfaction by rapid delivery of useful software

10. Close, daily cooperation between business people and developers

11. Welcome changing requirements, even late in development

12. Regular adaptation to changing circumstances

148

Individuals and
interactions

Customer
collaboration

Working
software

Responding to
change

Agile Practices
• Backlogs (Product and

Sprint)

• Behavior-driven
development (BDD)

• Cross-functional team

• Continuous
integration (CI)

• Domain-driven design
(DDD)

• Information radiators
(Kanban board, Task
board, Burndown
chart)

• Acceptance test-driven
development (ATDD)

• Iterative and

incremental
development (IID)

• Pair programming

• Planning poker

• Refactoring

• Scrum meetings
(Sprint planning, Daily
scrum, Sprint review
and retrospective)

• Small releases

• Simple design

• Test-driven
development (TDD)

• Agile testing

• Timeboxing

• Use case

• User story

• Story-driven modeling

• Retrospective

• On-site customer

• Agile Modeling

• 40-hour weeks

• Short development
cycles

• Collective ownership

• Open workspace

• Velocity tracking

• Etc.

149

Backlog – information radiators

Kanban Board

151

Kanban board structure
• Visual signals (typically cards)
• Columns or lists
• Work-in-progress limits
• A commitment point
• A delivery point

https://trello.com/b/LGHXvZNL/kanban-template

No one can work a second
consecutive week of overtime.
Even isolated overtime used
too frequently is a sign of
deeper problems that must be
addressed.

153

Collective Ownership

Every programmer improves any code anywhere in the system at any
time if they see the opportunity.

154

Pair Programming

157

Driver

Navigator

https://www.youtube.com/watch?v=ET3Q6zNK3Io

Test-driven development

Programmers write unit tests
minute by minute. These tests are
collected and they must all run
correctly. Customers write
functional tests for the stories in an
iteration.

159

https://www.youtube.com/watch?v=uGaNkTahrIw

Refactoring vs. Design

The design of the system is evolved
through transformations of the
existing design that keep all the tests
running.

161

DevOps

CI/CD

Continuous Integration (CI)

New code is integrated with the current system after no more than a
few hours. When integrating, the system is built from scratch and all
tests must pass or the changes are discarded.

164

Continuous Deployment (CD)
is closely related to Continuous Integration and refers to keeping your
application deployable at any point or even automatically releasing to
a test or production environment if the latest version passes all
automated tests.

Scrum Master

171

172

173

Scrum Master serves the Scrum Team

• Coaching the team members in self-management and cross-
functionality;

• Helping the Scrum Team focus on creating high-value Increments that
meet the Definition of Done;

• Causing the removal of impediments to the Scrum Team’s progress;
and,

• Ensuring that all Scrum events take place and are positive, productive,
and kept within the timebox.

Scrum Master serves the Product Owner

• Helping find techniques for effective Product Goal definition and
Product Backlog management;

• Helping the Scrum Team understand the need for clear and concise
Product Backlog items;

• Helping establish empirical product planning for a complex
environment; and,

• Facilitating stakeholder collaboration as requested or needed.

Scrum Master serves the organization

• Leading, training, and coaching the organization in its Scrum
adoption;

• Planning and advising Scrum implementations within the
organization;

• Helping employees and stakeholders understand and enact an
empirical approach for complex work; and,

• Removing barriers between stakeholders and Scrum Teams.

